Synthesis, Structure, and Reactivity of the Substitution-Labile Metal Cluster [BUqN]2- $[Ta_6Clⁱ_{12} (OSO_2CF_3)^a_{6}]$

Vance 0. Kennedy, Charlotte L. Stern, and Duward F. Shriver*

Department of Chemistry, Northwestem University, Evanston, Illinois 60208

Received June **3.** *1994*

The synthetic utility of metal cluster compounds with labile $Cl^1_8(CO_2CF_3)^2_6]$ was demonstrated recently.²⁻⁴ These compounds undergo ligand substitution reactions with stronger coordinating anions such as OAc^- and neutrals such as PR_3 or pyridine and unusual ligands such as $[(NC)Mn(CO)_2Cp]^{-2,3}$ The wide variety of new metal cluster derivatives that are accessible through this route should greatly expand the photochemically induced redox chemistry of the six-metal molybdenum and tungsten clusters.⁵ anions such as $[Bu_4N]_2[M_0eC]^i_8(OSO_2CF_3)^a{}_6]^1$ and $[Bu_4N]_2[M_0e^-]_2$

In the present note we report the preparation of analogous lightly coordinated tantalum cluster compounds $[Bu_4N]_n[Ta_6-I$ $Cl^{i}_{12} (OSO_{2}CF_{3})^{a}{}_{6}]$ (n = 2-4) from $[Bu_{4}N]_{n}[Ta_{6}Cl_{12}Cl_{6}]$ and demonstrate their facile substitution to produce a 12-metal supercluster. The clusters $[M_6Cl^i_8(OSO_2CF_3)^a_6]^{2-}$ (M = Mo, W) were synthesized by metathesis of $[M_6Cl_8Cl_6]^{2-}$ (M = Mo, W) with $AgOSO_2CF_3$ ² but this type of reaction did not lead to pure products with $[Bu_4N]_n[Ta_6Cl_1_2Cl_6]$ $(n = 2-4)$. By contrast, the reaction of the tantalum chloride cluster with $HOSO_2CF_3$ provided well defined cluster metathesis with high yields:⁶⁻⁸

 $[Bu_4N]_2[Ta_6Cl_{12}Cl_6]$ + 6HOSO₂CF₃ \rightarrow $[Bu_4N]_2[Ta_6Cl_{12}^i(OSO_2CF_3)^{a}^i_6]+6HC1$

Experimental Section

All manipulations were performed under a dry N_2 atmosphere employing standard Schlenk and syringe techniques.⁹ The solvents CH₂- $Cl₂$ and Et₂O were dried over P₂O₅ and CaH₂, respectively, and distilled prior to use. The IR spectra were obtained either **as** solution spectra using 0.1 mm path length CaF₂ solution cells (with rubber septa caps) or as Nujol mulls between KBr plates. The spectrometer employed was a Bomem MB-100 FT-IR set at a resolution of 2 cm^{-1} . UV-vis spectra were obtained on a Cary **1E** W-vis spectrophotometer in **1.0** cm path length cells designed for air-sensitive work. The mass spectra

- (1) The superscript notation for the ligands in the formula is as follows: $i =$ innen (or inner), $a =$ auser (or axial).
- (2) Johnston, D. H.; Gaswick, D. C.; Lonergan, M. C.; Stem, C. L.; Shriver, D. F. *Inorg. Chem.* **1992,** *31,* **1869-1873.**
- Johnston, D. H.; Stem, C. L.; Shriver, D. F. *Inorg. Chem.* **1993,** *32,* **5 170-5 175.**
- Harder, K.; Preetz, W. Z. Anorg. Allg. Chem. 1992, 612, 97-100.
- (a) Maverick, A. W.; Gray, H. B. *J. Am. Chem. SOC.* **1981,103,1298- 1300.** (b) Maverick, A. W.; Najdzionek, J. **S.;** MacKenzie, D.; Nocera, D. G.; Gray, H. B. *J. Am. Chem. SOC.* **1983,** *105,* **1878-1882.** (c) Nocera, D. G.; Gray, H. B. *J. Am. Chem. SOC.* **1984,** *106,* **824-825.** (d) Jackson, J. **A.;** Turro, C.; Newsham, M. D.; Nocera, D. G. *J. Phys. Chem.* **1990,94,4500-4507.** (e) Mussell, R. D.; Nocera, D. G. *Inorg. Chem.* **1990, 29, 3711-3717.**
- (6) Recently the Preetz group utilized HCO_2CF_3 and $CF_3C(O)OC(O)CF_3$ to form $[Bu_4N]_2[(Mo_6Cl_8)(OOCCF_3)_6].^4$ to introduce the labile ligand F_3CCO_2 ⁻ into $[Bu_4N]_2[(Mo_6Cl_8)(Cl)_6]$
- Jacobsen, C. J. H.; Villadsen, J.; Weihe, H. *Inorg. Chem.* **1993, 32, 5396-5397.**
- Cotton, F. A.; Shang, M.; **Sun,** Z. *S. Inorg. Chim. Acta* **1993, 212, 95-104.**
- Shriver, D. F.; Drezdzon, M. **A.** *Manipulation* of *Air-Sensirive Compounds;* John Wiley and Sons, Inc.: New York, **1986.**

 $E_{\rm g}^{\rm g} \sum |F_{\rm o}| - |F_{\rm c}| / \sum |F_{\rm o}|$. $E_{\rm g}^{\rm g} \sum w (|F_{\rm o}| - |F_{\rm c}|)^2 / \sum w |F_{\rm o}|^2]^{1/2}$.

were obtained either from the Midwest Center for Mass Spectrometry (University of Nebraska-Lincoln) or from the Analytical Services Laboratory (ASL) at Northwestem University. The conditions used at ASL were reported previously.^{2,3} Elemental analyses were performed by Elbach Analytical Laboratories, Gummersbach, Germany.

Synthesis of $[\text{Bu}_4\text{N}]_2[\text{Ta}_6\text{Cl}^i_{12}(\text{OSO}_2\text{CF}_3)^a_{6}]$ **.** In a typical synthesis, HOSOzCF3 **(1.6** mL) was added to [BUqNl~[TasCl&k]~~ **(300** mg) in $CH₂Cl₂$ (25 mL) under a dry $N₂$ atmosphere and the resulting mixture was stirred ovemight in the absence of light. Gases were purged from the reaction vessel to remove HC1 several times during a **24** h period, and then **all** the volatile components were removed under vacuum. The resulting oily brown residue was heated to ca. 80 "C under vacuum to remove the last traces of $HOSO_2CF_3$, leaving a brown solid which was recrystallized from CH₂Cl₂/Et₂O to yield 255 mg (64%) of product. **This** product appears to be a mixture of two components, the desired $[Bu_4N]_2[Ta_6Cl^i_{12}(OSO_2CF_3)^a_6]$ (brown), along with a small impurity of $[Bu_4N]_4[Ta_6Cl^i_{12}(OSO_2CF_3)^a_{6}]$ (green). These compounds were separated by growing large crystals in a diffusion tube and manually separating the crystals. IR (Nujol; cm^{-1}): 1340 $(\nu_{as}(SO_3))$ 1235 $(\delta_s(SO_3))$. Anal. Calcd for $C_{38}H_{72}Cl_{12}F_{18}N_2O_{18}S_6Ta_6$: C, 15.79; *H*, **2.51;** N, **0.97;** C1, **14.72;** Ta, **37.56.** Found: C, **15.75;** H, **2.37;** N, **1.00;** C1, **15.01;** Ta, **37.30.** $(\nu_s(CF_3))$, 1203 $(\nu_{as}(SO_3))$, 1004 $(\nu_s(SO_3))$, 1165 $(\nu_{as}(CF_3))$, 631

The analogous niobium cluster system $[Bu_4N]_n[Nb_6Cl^i_{12}(OSO_2CF_3)^8]$ $(n = 2-4)$ can be obtained in a manner similar to that for the tantalum compound.

Schlenk flask was charged with 15 mg (0.0052 mmol) of $[Bu_4N]_2[Ta_6 Cl^{i}{}_{12} (OSO_{2}CF_{3})^{a}{}_{6}$] and 15 mg (0.034 mmol) of $[Bu_4N][CpMn(CO)₂-$ CN].¹¹ In the dark, 7.0 mL of CH₂Cl₂ was added to the solids and the resulting solution was stirred overnight. To **this** solution was added slowly 10.0 mL of Et₂O, and the resulting microcrystals were isolated by filtration and dried *in vacuo* to yield **7** mg **(40%)** of product. IR (CHZC12; cm-l): **2055** (v(CN)), **1919, 1856** (v(C0)). **Synthesis of** $\left[\text{Bu}_4\text{N}\right]_2\left[\text{Ta}_6\text{Cl}^i_{12}\left\{(\mu\text{-NC})\text{Mn}(\text{CO})_2\text{Cp}\right\}^s{}_6\right]$ **.** A 30-mL

X-ray Structure Determination. The single deep red-brown crystals of $[Bu_4N]_2$ $[Ta_6Cl^i_{12}(OSO_2CF_3)^a_6]$ were grown by slow diffusion of ether into a concentrated CH₂Cl₂ solution of the cluster at room temperature in the absence of light. The selected crystal $(0.3 \times 0.2 \times$ **0.2** mm) was immersed in Paratone-N (Exxon) oil and mounted on a glass fiber and transferred to the N_2 cold stream of an Enraf-Nonius CAD-4 diffractometer with graphite monochromated **Mo** Ka radiation. Cell constants and an orientation matrix for data collection were obtained from a least squares refinement of the setting angles of **25** carefully centered reflections $(21.0 \le 2\theta \le 21.9^{\circ})$. Based on the systematic absences of $h0I$ ($l = 2n + 1$) and $0k0$ ($k = 2n + 1$) and the successful solution and refinement of the structure, the space group was determined to be $P2_1/c$ (No. 14). The data were collected $(\pm h, -\frac{1}{2})$ $k,-l$ at -120 ± 1 °C using the $\omega-\theta$ scan type to a maximum 2 θ of **48.0".** There were a total of **6874** reflections measured of which **6653** were considered unique $(R_{int} = 0.055)$ and 4411 $(I > 3.00\sigma(I))$ were considered observed. A summary of relevant crystallographic data is provided in Table **1.** The intensities of three representative reflections

⁽¹⁰⁾ (a) Kuhn, P. **J.;** McCarley, R. E. *Inorg. Chem.* **1965,** *4,* **1482-1486. (b)** Mackay, R. A.; Schneider, R. F. *Inorg. Chem.* **1%8, 7,455-459.** (c) Hughes, B. G.; Meyer, J. L.; Fleming, **P.** B.; McCarley, R. E. *Inorg. Chem.* **1970, 9, 1343-1346.** (d) Koknat, **F.** W.; **Parsons,** J. **A.;** Vongvusharintra, A. *Inorg. Chem.* **1974,** *13,* **1699-1702.**

⁽¹¹⁾ Fischer, **E.** 0.; Schneider, R. J. J. *J. Organomet. Chem.* **1968, 12, P27-P30.**

Figure 1. ORTEP drawing of the anion of $[Bu_4N]_2[Ta_6Cl^i_{12}(OSO_2 CF_3$ ^a₆] with hydrogen atoms omitted. Thermal ellipsoids are drawn at 50% probability.

which were measured after every 90 min of X-ray exposure time remained constant throughout data collection indicating crystal and electronic stability (no decay correction was applied). The data were corrected for Lorentz and polarization effects. *Am* empirical absorption correction, using the program DIFABS,¹² was applied which resulted in transmission factors ranging from 0.84 to 1.36.

All calculations were carried out with the TEXSAN crystallographic software package.¹³ The structure was solved by direct methods.¹⁴ Neutral atom scattering factors were taken from Cromer and Waber.15 Anomalous dispersion effects were included in F_c ;¹⁶ the values for $\Delta f'$ and $\Delta f''$ were those of Cromer.¹⁷ The rotationally disordered fluorines atoms were refined isotropically and the remaining non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement¹⁸ included 443 variable parameters and converged (largest parameter shift was 0.49 times its esd) to an *R* value of 0.034 $(R_w =$ 0.036). The standard deviation of an observation of unit weight 19 was 1.30. The weighting scheme was based on counting statistics and included a factor $(p = 0.03)$ to downweight the intense reflections. Plots of $\sum w(|F_o| - |F_c|)^2$ versus $|F_o|$, reflection order in data collection, (sin θ)/ λ , and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map

- DIFABS: Walker and Stuart. *Acta Crystallogr.* 1983, *A39,* 158-166.
- (13) TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation (1985).
- (14) Structure solution methods: Gilmore, C. J. MITHRIL an integrated direct methods computer program. *J. Appl. Crystallogr.* 1984, 17, 42-46 (University of Glasgow, Scotland). Beurskens, P. T. DIRDIF: Direct Methods for Difference Structures-an automatic procedure for phase extension and refinement of difference structure factors. Technical Report 1984/1; Crystallography Laboratory: Toernooiveld, 6525 Ed, Nijmgegen, The Netherlands, 1984.
- Cromer, D. T.; Waber, J. T. *International Tables for X-ray Crystallography;* The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
- Ibers, **J.** A.; Hamilton, W. C. *Acta Crystallogr.* 1964, 17, 781.
- Cromer, D. T. *International Tables for X-ray Crystallography;* The Kynoch Press: Birmingham, England, 1974; Vol. N, Table, 2.3.1.
- Kynoch Press: Birmingham, England, 1974; Vol. IV, Table, 2.3.1.
Least-squares: Function minimized was $\sum w(|F_0| F_c|)^2$ where $w =$ $4F_0^2/\partial^2(F_0^2)$ and $\partial^2(F_0^2) = [S^2(C + R^2B) + (pF_0^2)^2]/Lp^2$ (S = scan rate, *C* = total integrated peak count, *R* = ratio of scan time to rate, $C =$ total integrated peak count, $R =$ ratio of scan time to background counting time, $B =$ total background count, $Lp =$ Lorentz-polarization factor, and $p = p$ -factor).
- (19) Standard deviation of an observation of unit weight: $[\sum w(|F_0| |F_c|)^2]$ $(N_o - N_v)$ ^{1/2}, where N_o = number of observations and N_v = number of vanables.

Table 2. Atomic Coordinates and B (eq) Values (\AA ²) for	
$[Bu_4N]_2[Ta_6Cl^i_{12}(OSO_2CF_3)^i_{6}]$	

 $B(\text{eq}) = (4/3)[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(\cos \gamma)B_{12} + ac(\cos \gamma)B_{13}]$ β) $B_{13} + bc(\cos \alpha)B_{23}$.

corresponded to 1.07 and -0.95 e/ \AA ³, respectively and were in the vicinity of the metal positions.

Results and Discussion

An X-ray single crystal determination of a brown crystal reveals an essentially octahedral Ta_6 cluster, Figure 1, where $[Ta_6Clⁱ12(OSO₂CF₃)²6]$ ²⁻ is situated on an inversion center and the two $[Bu_4N]^+$ cations are related by the center of symmetry.¹⁹ The Ta_6 core is a slightly distorted octahedron, in agreement with the essentially octahedral metal array in other $[Ta_6Cl_{12}L_6]^{n-1}$ systems.20-26 The average Ta-Ta bond length, **2.940 A,** is also

⁽²⁰⁾ Burbank, R. D. *Inorg. Chem.* 1966, *5,* 1491-1498.

Table 3. Selected Bond Distances **(A)** and Angles (deg) for $[Bu_4N]_2[Ta_6Cl^i{}_{12} (OSO_2CF_3)^a{}_6]$

$Ta1-Ta2$	2.935(1)	Ta2-Cl1'	2.419(3)
$Ta1 - Ta2'$	2.9536(9)	$Ta2-C13$	2.419(3)
$Ta1-Ta3$	2.942(1)	Ta2–Cl4	2.421(3)
$Ta1-Ta3'$	2.930(1)	$Ta2 - C16$	2.427(3)
$Ta1 - C11$	2.428(3)	$Ta2-O4$	2.118(7)
$Ta1 - C12$	2.426(3)	$Ta3 - C12$	2.415(3)
$Ta1 - C14$	2.423(3)	Ta3-Cl3'	2.425(3)
$Ta1 - C15$	2.416(3)	Ta3-C15'	2.416(3)
$Ta1 - O1$	2.118(8)	Ta3-C16'	2.422(3)
$Ta2-Ta3$	2.939(1)	$Ta3-O7$	2.107(7)
$Ta2-Ta3'$	2.943(1)		
Ta1—Ta2—Ta1′	89.85(3)	Ta1—Ta3—Ta1′	90.17(4)
Ta1-Ta2-Ta3	60.11(3)	Ta1-Ta3-Ta2	59.90(3)
Ta1—Ta2—Ta3′	59.81(3)	Ta1—Ta3—Ta2′	60.26(3)
Ta1-Ta2-Cll'	142.38(8)	Ta1-Ta3-Cl2	52.60(8)
Ta1-Ta2-Cl3	95.50(7)	Ta1-Ta3-Cl3	95.19(8)
Ta1-Ta2-Cl4	52.67(8)	Ta1-Ta3-Cl5'	142.79(8)
$Ta1-Ta2-C16$	94.96(8)	$Ta1-Ta3-C16'$	95.80(9)
Ta1-Ta2-04	133,8(3)	Ta1-Ta3-07	134.8(3)
Ta1-Ta2'-Ta3	59.66(2)	Ta1—Ta3′—Ta2	60.43(3)
$Ta1 - Ta2' - Ta3'$	59.86(2)	Ta1-Ta3'-Ta2'	59.98(3)
Ta1-Ta2'-Cl1	52.54(8)	Ta1-Ta3'-Cl2'	142.76(8)
$Ta1 - Ta2' - Cl3'$	95.19(8)	Ta1-Ta3'-Cl3'	95.64(8)
Ta1-Ta2'-Cl4'	142.51(8)	$Ta1 - Ta3' - Cl5$	52.63(8)
$Ta1 - Ta2' - Cl6'$	95.38(8)	Ta1-Ta3'-Cl6	95.20(8)
Ta1-Ta2'-O4'	136.3(3)	$Ta1 - Ta3' - O7'$	134.9(3)
$Ta3-Ta2-Ta3'$	89.68(4)	$Ta2-Ta3-Ta2'$	90.32(4)
Ta2—Ta1—Ta2′	90.15(3)	Ta2-Ta1'-C15'	95.17(8)
$Ta2-Ta1-Ta3$	59.99(3)	$Ta2-Ta1'-O1'$	135.6(3)
$Ta2-Ta1-Ta3'$	60.21(3)	$Ta3 - Ta1 - Ta3'$	89.83(4)
Ta2-Ta1-Cl1	142.34(9)	Ta3—Ta1—Cl1	94.53(9)
Ta2-Ta1-C12	95.34(8)	Ta3—Ta1—Cl2	52.38(8)
Ta2—Ta1—C14	52.69(8)	Ta3-Ta1-Cl4	95.00(8)
$Ta2-Ta1-C15$	95.67(8)	Ta3—Ta1—Cl5	142.49(8)
$Ta2-Ta1-O1$	134.3(3)	$Ta3 - Ta1 - O1$	138.0(2)
$Ta2'$ – $Ta1$ – $Ta3$	59.88(2)	Ta3'-Ta1'-Cl1'	95.51(8)
Ta2'-Ta1-Ta3'	59.91(3)	Ta3-Ta1'-Cl2'	142.20(8)
$Ta2-Ta1'-Cl1'$	52.20(8)	Ta3-Ta1'-Cl4'	96.23(8)
Ta2-Ta1'-Cl2'	94.79(8)	$Ta3-Ta1'-Cl5'$	52.66(8)
Ta2-Ta1'-Cl4'	142.83(8)	Ta3-Ta1'-01'	132.1(2)

as expected for a $[Ta_6Cl_{12}L_6]^{2-}$ core. The nearest neighbor Ta-C1 distances range from 2.428 to 2.416 Å. The narrow $Ta -$ Ta-Ta angles range from 59.66 to 60.11 $^{\circ}$, while the wide ones range from 89.68 to 90.17°. The CF₃ portions of the $OSO_2CF_3^$ groups are rotationally disordered with respect to the pseudo 3-fold CF_3 axis. Table 2 lists the atomic coordinates and $B(eq)$

- (21) Bauer, D.; Schnering, H. *G. Z. Anorg. Allg. Chem. 1968,361,* 259- 277.
- (22) Thaxton, C. B.; Jacobson, R. A. *Inorg. Chem.* 1971, 10, 1460-1463.
(23) Basson, S. S.; Leipoldt, J. G. *Transition Met. Chem.* 1982, 7, 207-(23) Basson, S. **S.;** Leipoldt, **J.** G. *Transition Met. Chem. 1982,* 7, 207-
- (24) BmiEevif, N.; RuZiC-ToroS, *i.;* KojiC-Prodit, B. *J. Chem. Soc., Dalton* 209.
- *Trans. 1985,* 455-458.
- (25) Imoto, H.; Hayakawa, **S.;** Morita, N.; Saito, T. *lnorg. Chem. 1990, 29,* 2007-2014.
- (26) BmiEeviC, N.; McCarley, R. E.; Hilsenbeck, S.; KojiC-Prodif, B. *Acra Crystallogr. 1991,* C47, 315-318.

values, while Table 3 lists selected bond distances and angles for the cluster. The IR (Nujol) data shows a band at 1004 cm^{-1} which is assigned as the metal bound O^{-S} stretching frequency and two bands assigned as $O=$ S at 1203 and 1340 cm⁻¹, with additional C-F bands at 1165 and 1235 cm^{-1} which correlate well with the data for the Mo_6 derivative.^{2,27} MS-FAB⁻ data show a complex parent peak envelope at a maximum m/z of 2889 amu, which agrees well $(R = 13.5$ over a m/z range of 2886-2896) with the calculated peak envelope. The loss of the expected fragments assignable as OTf, Cl and [Bu₄N] was also observed. The UV-vis (CH₂Cl₂) data, λ_{max} 235, 341, and 1153 nm, are in agreement for that expected for a $[Ta_6Cl_{12}L_6]^{2-}$ core structure.

The $[Bu_4N]^+$ salt of $[Ta_6Cl^i_{12}(OSO_2CF_3)^a_6]^{2-}$ was found to react with 6 equiv of the $[Bu_4N]^+$ salt of $[(NC)Mn(CO)_2Cp]^+$ in CH₂Cl₂ to provide the 12-metal supercluster $[Bu_4N]_2[Ta_6-Ta_7]$ $Clⁱ_{12}$ { μ -(NC)Mn(CO)₂CP}^a₆]. This compound (in CH₂Cl₂)displays IR absorptions for $\nu(CN)$ at 2055 cm⁻¹ and for $\nu(CO)$ at 1919 and 1856 cm^{-1} , which are shifted from 2122, 2046 and 1797 cm⁻¹ in [Bu₄N][CpMn(CO)₂CN] and 2028, 1916 and 1866 data for the compound show a parent broad envelope with a maximum m/z of 3210 amu, which agrees well with the calculated peak envelope with a maximum m/z of 3209 amu,²⁸ further the loss of fragments assignable as $[(NC)Mn(CO)₂CD]$ and [Bu₄N] were observed. cm⁻¹ in $[(Mo_6Cl_8){\mu-(NC)Mn(CO)_2Cp}_{6}]^{2-3}$ The MS-FAB-

The $[Ta_6Cl_{12}Cl_6]^{n-}$ cluster has several readily accessible oxidation states and their redox chemistry has been investigated extensively;^{25,29} therefore, this labile tantalum cluster should expand the substitution chemistry of these clusters and facilitate the formation of new ligand bridged metal systems that may undergo intervalence charge transfer reactions.

Acknowledgment. We thank the National Science Foundation (Award No. CHE-90014662) for support of our research. We also acknowledge the Midwest Center for Mass Spectrometry with partial support by the National Science Foundation, Biology Division (Grant No. DIR9017262) for the MS-FABof $[Bu_4N]_2[Ta_6Cl^i{}_{12} (OSO_2CF_3)^i{}_{6}]$.

Supplementary Material Available: Tables of X-ray crystallographic details, hydrogen atom coordinates, anisotropic thermal parameters, and interatomic bond distances and angles (17 pages). Ordering information is given on any current masthead page.

⁽²⁷⁾ Johnston, D. H.; Shriver, D. F. *Inorg. Chem. 1993, 32,* 1045-1047.

⁽²⁸⁾ In **this** high **mass** range the resolution of the ASL instrument is less than 1 **amu,** so agreement factors between the expected and observed isotopic pattem could not be calculated; however, there was very good qualitative fit between the observed spectrum and the smoothed envelope of the calculated spectrum.

^{(29) (}a) Schiifer, H.; Plautz, H.; Baumann, H. *2. Anorg. Allg. Chem. 1973,* 401, 63-84. (b) Cooke, N. E.; Kuwana, T.; Espenson, J. *Inorg. Chem. 1971, 10,* 1081-1083. (c) McCarley, R. E.; Hughes, B. G.; Cotton, F. **A.;** Zimmerman, R. *lnorg. Chem. 1965,* 4, 1491-1492. (d) Klendworth, D. D.; Walton, R. A. *Inorg. Chem.* 1981, 20, 1151-1155.